skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Griesemer, Sam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Physics-informed machine learning (PIML), the combination of prior physics knowledge with data-driven machine learning models, has emerged as an effective means of mitigating a shortage of training data, increasing model generalizability, and ensuring physical plausibility of results. In this paper, we survey a wide variety of recent works in PIML and summarize them from three key aspects: 1) motivations of PIML, 2) physics knowledge in PIML, and 3) methods of physics knowledge integration in PIML. We additionally discuss current challenges and corresponding research opportunities in PIML. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available December 10, 2025
  3. Free, publicly-accessible full text available December 10, 2025